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Abstract: A CSTR is an Continuously Stirred Tank Reactor with the main function of agitation and to achieve constant 

composition. It has an important role in chemical process plants. A CSTR has an higher degree of nonlinearity when 

compared with other chemical reactors, this is mainly due to the temperature variations that occur because of 

uncertainity in feed. Hence, temperature control is a strenuous task. The proposed work focusses on control of 

temperature in a jacketed chemical reactor, by effectively designing a internal model controller (IMC). The process is a 

open loop unstable system due to the effect of scale-up on the steady state and other dynamic characteristics. The 

proposed digital controller is capable of providing system stability, set point tracking and disturbance rejection. The 

simulation result shows the suitability of using the proposed controllers for control of the unstable CSTR process.  
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I.  INTRODUCTION 

The continuous flow stirred-tank reactor, also known as 

closed type agitator reactor, is a typical reactor type found 

in chemical process industries. A CSTR often refers to a 

model which is used to attain a specified output. As these 

chemical processes have to operate under a particular 

working order, they are subject to process hinderances. 

The classical two-state CSTR model is well-known to be 

capable of giving constructive behaviour. Bequette noted 

that, a three-state model (incorporating a jacket energy 

balance) could result in multiple steady-states under 

conditions whereas the two-state model exhibits a single 

steady state operating point. 
 

Continuous stirred-tank reactors are open systems, where 

material is free to enter or exit the system, that operate on 

a unbalanced state, where the conditions in the reactor 

change with time. Reactants are continuously introduced 

into the reactor, while products are continuously removed. 

Usually, the modelling of an industrial CSTR is done by 

comparing with that of an ideally controlled reactor, which 

are driven under ambient conditions. Thus, under ideal 

reactor conditions, perfect mixing is considered so as to 

calculate the exact product inlet and outlet ratio. Hence, 

Temperature control of unstable CSTR process is 

generally crucial and complicated due to large system 

nonlinearity. Many researchers have developed controllers 

for SISO unstable CSTR process [4],[5]. 
 

There exist various techniques for designing a digital 

controller, both in transfer function approach and the state 

space approach. But the most prominent technique is to 

design internal model controller for modeled unstable 

process. 

 

This paper is organized as follows: Mathematical 

modeling of the unstable CSTR process is given in section 

II, Digital  

 

 

controller design for the unstable CSTR process is given in 

section III, The simulated results are obtained and shown 

in section IV and finally, the Conclusions of the work are 

drawn in section V 

 

II. PROCESS DESCRIPTION 
A continuous stirred tank reactor (CSTR), is considered 

where in a first order exothermic reaction A B  takes 

place at a temperature TR with a cooling jacket. The 

chemical reaction is first order with Arrhenius temperature 

dependence. 

 
Fig. 1. CSTR process model. 

 

In the jacketed CSTR the heat is either added or removed 

to compensate for the temperature difference between a 

cooling jacket fluid and the reactor fluid. The ODE‟s that 

model the CSTR behavior is given as equation [1.a]. The 

component material balance on the reactant gives: 

   
 

1 0 0

- Ea
RTR= , , - -k eA

A R j A A A

dC q
f C T T C C C

dt V
         (1.a) 
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Where „q‟ is the feed flow rate of the reactant, „CA0‟ is the 

feed concentration, „CA‟ is the concentration of component 

in the reactor, „K0‟ is the frequency factor, „Ea‟ is the 

activation energy, „R‟ is the ideal gas constant, „TR‟s the 

reactor temperature in degree Rankine.Where „  - H ‟ is 

the rate of heat produced during reaction, „U‟ is is the heat 

transfer coefficient, „A‟ is the heat transfer area, „
0T ‟ is the 

reactor feed temperature, „ jT ‟ is the jacket temperature in 

degree Rankine. 

 
The energy balance in the jacket is, 

     3

j j

UA
= , , - + -

Vρ

j jf

A R j jf j R j

j p j

dT q
f C T T T T T T

dt V C

 
  

 
        (1.b) 

 

Where „qjf‟ is the jacket make up flow rate The variables 

„CA0‟, „ 0T ‟, „q‟, „qjf‟, „ jT ‟ are all considered as inputs and 

out of which „CA0‟ and „
0T ‟ are considered as the 

disturbance variables. The manipulated variable is the 

reactor feed flowrate and the controlled variable is the the 

reactor temperature. The three nonlinear differential 

equations expressed in equations 1.a, and 1.b cannot be 

solved analytically. The approximate model is derived 

about the steady-state operating point of the reactor. The 

state space representation of the CSTR process in terms of 

deviation variables is given in equation [1.c]. 
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   (1.c) 

The output state space model is, 
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The output and input states are defined in the deviation 

variable form as, 
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The first two inputs are considered as the manipulated 

variables, while the last two inputs are disturbances.  

The Jacobian matrix is, 

Where, 
Rs

a- 

= es

E

RT
k 

 
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        (1.f) 
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The disturbance matrix is, 
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Substituting the numerical values given in Table I, the 

above constants are evaluated and the state space model of 

the system thus obtained is given as, The transfer function 

which relates the
 
Reactor temperature (TR) to the cooling 

water flow rate  jfq of the plant is expressed as,
 

R

jf

(s) 4.753S 38

3 2(s) S 9.34S 16.98S 34.2

T

q

 


  
           (2) 

 

The transfer function indicates that the open loop system is 

unstable (presence of unstable pole) due to the inclusion of 

cooling jacket dynamics. 

 

Table. I. Reactor steady state parameter values: 

Variable Description Value 

AosC  Steady state Feed concentration 

(lb  mol / ft
3
) 

0.132 

0sT  
Steady state Feed  temperature 

(F) 
60 

RsT  
Steady state Reactor  

temperature (F) 
101.1 

jfsT  
Steady state cooling water 

input  temperature (F) 
0 

jsT  
Steady state jacket  temperature 

(F) 
80 

AsC  Steady state Reactor  

concentration (lb  mol / ft
3
) 

0.066 

sq
 

Steady state Feed flow rate 

(ft
3
/hr) 

340 

jfs
q

 
Steady state cooling water  

flow rate (ft
3
/hr) 

24 

 

III. CONCEPTS OF IMC FOR UNSTABLE 

PLANTS 

In the chemical engineering field, the internal model 

controller is a popular technique and it is named so 

because the controller has an explicit model of the plant as 

its part. The IMC feedback configuration is shown in 

Fig.2.  

 
Fig.2. IMC feedback configuration. 
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The actual transfer function of the plant is denoted as 
1

( )G zp


 

and its model by

 

1
( )G z


. Let the model transfer 

function be factored as  

1
( )

nm
B B B

k
G z z

A

 
 


g

                (2.a)
 

Where, 

Bg is the factor of B with the roots inside the unit circle 

and with positive real parts. B
 is the factor of B that 

have roots with negative real part and which may lie either 

inside, outside or on the unit circle.
nmB 

 refers to that 

part of B containing non minimum zeros of B with 

positive real parts. The equivalence of standard control 

configuration with IMC is shown in Fig.3.  

 
Fig.3. Equivalence of standard control configuration with 

IMC 

 

In this schematic diagram, the block shown in dotted line 

is G
C

 (controller in the conventional form) and is 

expressed as, 

( )

1 ( ) ( )

G ZQ
G

C G Z G ZQ



         (2.b) 

Suppose the plant 
1( )G z is

 

containing one unstable pole. 

The internal stability of the system is assured if the 

following conditions are satisfied. 

 

a) ( )G Z
Q

is stable. 

b) At the unstable poles pi of the plant 1( )G z , 

 1 ( ) ( )QG Z G Z is zero.  

That is,  1 ( ) ( ) 0
i

Q
p

G Z G Z                  (2.c) 

It is achieved by introducing a parameter β in the 

definition of ( )G Z
Q

. 

 † 1
1( )Q G G z

f
G Z 


             (2.d)

 
 

Where,  

† A
G nm

B B Bg s r

           (2.e)

 

sB 
 is the steady state equivalent of factor of  

B
,

nm

rB 
is 

nmB 
with reversed coefficients, 

Substituting the definition of ( )G Z
Q

 given in Equation 

(2.e) into Equation (2.f), we get 

  † 11-G 1 0
i

f
z p

G G z 



               (2.f) 

Solving this, we obtain 

†

1
1

G
i

f z p

p
G G





 
  
 
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        (2.g) 

 

The noise and model-mismatch have mainly high 

frequency components. To account for this, a low pass 

filter of the form is used. 

 
1

1

1

f

f

f

B
G

A z



 





,       (2.h)  

           where 1 >  > 0 

The IMC equivalent conventional feedback controller is 

given by, 

    

( )

1
1

B A S zf
G

C nm nm k R zB A B B B B B z zs r rf


 
     

 g f

        (3) 

 

Digital internal model controller design: 

The discrete version of the continuous time transfer 

function is obtained and is given by G(z) . 

T(s) 4.753s 38

3 2F (s) s 9.34s 16.98s 34.2jf

 


  
          (4)
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1 2 3
1 2.91z 2.82z 0.911z

3 1 1
0.237x10 1 0.96 z 1 0.95z B(z)1 k

z z
1 2 3 A(z)1 2.91z 2.82z 0.911z
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          (5) 

 

Comparing with an equation (6), we find that 
1 2 3A 1 2.91z 2.82z 0.911z     

 

3 10.237 10 1 0.95B z      g

 

1B 1 0.96z    

 

1nmB    
30.237 10pk   

 

 

The Q form of IMC is obtained using the formula, 

 
1 1

1
1

1
( )Q

A
znm

B B B zg s r

G Z





 
   


        (6) 

It is evaluated that,

 

1
nm

Br

  

1.96Bs



 

3 1
0.237 10 1 0.95B z

 
    

 g

 The filter factor α is chosen as α = 0.1 and β is evaluated 

as, 

1
1 0.02

†
G

p
G G

f z pi

   



 
 
 
 
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The IMC equivalent conventional feedback controller is 

given by, 

    

( )

1
1

B A S zf
G

C nm nm k R zB A B B B B B z zs r rf


 
     

 g f

        (7) 

   

1 2 3 4
( ) 0.9 2.6 2.5 0.77 0.016

3 1 2
10 0.54 0.26 0.28

S z z z z z

R z z z

   
    

  
  

         (8) 

 

IV. SIMULATION RESULTS: 

In order to analyze the performance of the proposed 

controllers, namely the figures shown in Fig.5 and Fig.6 

are simulated using MATLAB. The controller term 
 

 

S z

R z
 

is evaluated for simulation. The time response of CSTR 

process in open loop mode is shown in Fig.4.

 

 
Fig.4. Open loop step response of the unstable CSTR 

process 

 

 
Fig.5. IMC servo response to set point change in coolant 

flow rate 

 

 
Fig.6. IMC Servo - Regulatory response to step 

disturbance of magnitude 10 begins at 5 hours and ends at 

7 hours. 

V.  CONCLUSION 

Hence Internal Model controller algorithms are 

demonstrated for a modeled unstable jacketed CSTR 

process. The time response shows that, the settling time, 

overshoot and rise time constraints are almost met. Hence, 

Internal Model Controller reduces uncertainity of the 

system and improves stability. 
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